LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc.DEGREE EXAMINATION – **STATISTICS**

THIRD SEMESTER – **APRIL 2019**

16/17PST3MC02/ ST 3816 - STOCHASTIC PROCESSES

Date: 09-04-2019 Dept. No. Time: 09:00-12:00 Dept. No.	Max. : 100 Marks
Section -A Answer all the questions	10 X 2 = 20 marks
1.Define a stochastic process and give an example.	
2.Define a transition probability matrix.	
3. When a stochastic process is called Markov?	
4. Define periodicity of Markov chain.	
5. When a state of a Markov chain is called recurrent or transient?	
6. Define a covariance stationary process.	
7. Show that communication is an equivalence relation.	
8. Define a renewal process.	
9. State Abel's lemma.	
10. Give two examples for branching process.	
Section – B	
Answer any five questions	5 X 8 = 40 marks
11. Explain (i) One dimensional random walk (ii) Spatially homogeneous M	Markov chains (4+4)
12. State and prove the necessary and sufficient conditions for a state to be	recurrent.
13. Explain stationary probability distribution of a Markov chain.	
14. Derive Yule process.	
15. Show that the Poisson process can be viewed as a renewal process.	
16. Explain supermartingales and submartingales.	
17. For a branching process establish the relation for probability generating	function.
18. Illustrate stationary process with two examples.	

Section- C Answer any two questions	2 X 20 = 40 marks
19. (a) State and prove the basic limit theorem of Markov chains.	
(b) Show that the two dimensional random walk is recurrent	(12+8)
20.(a) Derive $P_n(t)$ for Poisson process by clearly stating the assumptions.	
(b) Derive a system of differential equations for a pure birth process.	(12 + 8)
21.(a) Obtain the mean and variance of branching process.	
(b) If is the probability of eventual extinction, show that it satisfies the equation $\varphi(s) = s$.	
(10 + 10)	
22.(a) Explain two contrasting stationary processes and moving average proc	cesses.

(b) Illustrate martingales with two examples. (10 +10)
